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APPLICATIONS OF OPTIMALLY LOCAL INTERPOLATION 
TO INTERPOLATORY APPROXIMANTS 

AND COMPACTLY SUPPORTED WAVELETS 

CHARLES K. CHUI AND JOHAN M. DE VILLIERS 

ABSTRACT. The objective of this paper is to introduce a general scheme for 
the construction of interpolatory approximation formulas and compactly sup- 
ported wavelets by using spline functions with arbitrary (nonuniform) knots. 
Both construction procedures are based on certain "optimally local" inter- 
polatory fundamental spline functions which are not required to possess any 
approximation property. 

1. INTRODUCTION 

Let n > 3 be any positive integer. This paper is concerned with (polynomial) 
spline functions of order n and with knot sequence 

(t: .. _t_i to < - : 

(1.1) 
j where ti+2 ti > ?, i E Z. 

The space of such spline functions will be denoted by S,t; and in view of the 
separation condition in (1.1), every function in Sm,t is necessarily in C,-3(IR). 

Hence, by setting 

2xi :=t2i, i E 2, 

(1.2) j so that x: .< x1 < xo < .. 

it is meaningful to study the problem of interpolation from Sm,t with sample points 
at x. 

We first consider for any integer v, with 1 < v < max{1, n - 3}, the seemingly 
useless "optimally local" (i.e., minimally supported) fundamental functions n,vi = 

en,r,t,x,i in Sn,t, that are defined (uniquely) by the interpolation conditions 

(1.3) fn,V,i(xj) = 8i,j, i, j E 2, 

and the condition that xi-, is closest, from the left, to the left-hand endpoint of 
the interval supp fn,u,i For the shape of fn,u,i to be most "symmetric", v must be 
so chosen that the sample point xi is closest to the middle one among the knots 

(?1996 American Mathematical Society 

99 

Received by the editor December 17, 1993. 
1991 Mathematics Subject Classification. Primary 41A05, 41A15. 
Research of the first author was supported by NSF Grant DMS 92-06928 and ARO Contract 

DAAH 03-93-G-0047. 



100 C. K. CHUI AND J. M. DE VILLIERS 

t n supp V Hence, again by leaning toward the left if necessary, the optimal 
choice of v for this purpose is 

(1.4) in:=max{1, [n2j} 

(where Lxi denotes the largest integer not exceeding x), and we will use the notation 

(1.5) fn,i = fn,i,,i 

Hence, by following the notation 

( 1.6) Nn,i (X) = Nn,t ,i (X) :=(ti+n -ti ) [ti, , . ti+n] -)+ 

for the nth-order (normalized) B-splines in Sn,t in [1, p. 108], we may immediately 
conclude that 

f3j1,i (X) - N32 -' ((x) ' 
=N3,2i- (Xi) 

whereas, for n > 4, it is not difficult to see that fn v,j is a linear combination of the 
B-splines 

Nn,2i_2>... Nn12i-2v+n-4 

so that 

[t2i-1, Xi+l] for n= 3, 

(1.7) supp fn,v,i { Z 
t [Xi-vXi-v+n-2] for n > 4. 

In particular, for v = in) we have 

[Xi-in, Ii+in] for even n > 4, 
(1.8) sup n,i =[Xi-in,I Xi-i1n+n-2] 

[Xi-inlxi+i,+,] for odd n>5. 

For n > 4, to formulate fn,v,i explicitly, we rely on the totally positive (and hence, 
nonsingular, because of the location of the sample points) (n - 3) x (n - 3) matrix 

(1.9) An,vli := [Nn,2i-2v+k-l(Xi-V+j)]1<j,k<n-3 Nn2=2, Nn2i2n] 
Xi-v+l X . . .:_i-v+n-3 

(see [18] for the notation) and the corresponding matrix 

(l.l0) An,v,i (x) =[ Nn,2i-2v,, Nn,2i-2v+n-4 ] 
-Xi-v+1,- . .,Xi1, x,Xi+1i, . Xi., -v+n-3_ 

which is obtained by replacing the vth row of An,,,i with the row vector 

[Nn,2i-2v(X), * Nn,2i-27+n-4 (X)] 

It is now clear that the optimally local fundamental functions ?n,u,i are given by 

det An,u, i (x) 
(1.11) n,v,i (X) d tA n > 4, i E 2, 1 < K < n-3. 

Graphs of , will be displayed in ?4. 



INTERPOLATORY APPROXIMANTS AND WAVELETS 101 

These basic functions give rise to the "optimally local" interpolation operator 
Lr,,, defined on the space C(R) of continuous functions by 

(1.12) (Ln,vf)(x) Zf(xi)ne,,,i(x), f E (R). 
iEz 

From the interpolatory property (1.3), we have 

(1.13) (Ln,vf-f) (Xj) = O, j E Z. 

It is important to remark, however, that the operator Ln,, does not provide a good 
approxinmation. In fact, it does not even reproduce constants. In this paper, we 
will give two somewhat unusual applications of Ln,, and particularly, in ?3, of 

(1.14) Ln:-Ln,i - 

The first is to give a simpler algebraic procedure than that of Dahmen, Goodman, 
and Micchelli [11,12] for constructing locally supported interpolants from Sn,t with 
simple knot sequence t, i.e., 

(1.15) ti+1 > ti, i e Zi 

that possess approximation order p, for any desirable p < n; and the second is to 
obtain explicit expressions of compactly supported spline wavelets with arbitrary 
nonuniform knots which are allowed to coalesce up to the separation condition in 
(1.1). This class of wavelets includes the minimally supported spline wavelets for 
uniform knots introduced in [9] and the extension to nonuniform simple knots by 
Buhmann and Micchelli [2] (where only existence was established). It does not, 
however, give immediately the spline wavelets on bounded intervals introduced in 
[7], and a somewhat more general consideration by Lyche and M0rken [21]. 

The idea behind our constructive scheme for compactly supported interpolants 
with any desirable order of approximation is originated from [6]. However, since we 
are interested in smallest possible and specific supports as designated by the index 
v, great care has to be taken in the construction of the quasi-interpolants that give 
a tight match with the optimally local interpolation operator Ln, The techniques 
we will introduce are based on those in [14,15], where xi = t(n-)i, n > 3, in (1.2) 
was considered instead. (For further development of this approach, the reader is 
referred to [16,17].) We also remark that the resulting interpolatory approximants 
so constructed in this paper are more attractive than those constructed in [4] by 
applying the quasi-interpolants in [3] directly. By "blending" with the operators 
Ln,v the constructive scheme to be developed in ?2 becomes quite easy to use. For 
instance, to construct the optimally local interpolatory approximants of Dahmen, 
Goodman, and Micchelli [11] for the cases 3 < n < 5, we reduce the dimension of 
the system of linear equations to be solved by twice the value of the approximation 
order. 

For the construction of spline wavelets, it was already noted in [8] and formally 
established in [10] that the wavelet space of order m with knots '2 is isomorphic 
to the subspace of cardinal splines of order n = 2m (with the same knots) that 
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vanish at Z (see [5, Theorem 6.3]). The formulation of this result in the setting of 
nonuniform simple knots is instrumental to the existence proof in [2]. We will again 
make use of this isomorphism framework; but with the aid of the optimally local 
interpolation operator Ln, for n = 2m, it is quite simple to construct compactly 
supported spline functions in Sn,t that vanish at the sample sequence x. Only the 
selection of the sample spline function that gives rise to the corresponding wavelets 
with minimum supports requires some tricky manipulation. This consideration will 
be discussed in ?3. 

In this paper, we only consider interpolation of function values. If some appro- 
priate multiplicities of order at least 1 are assigned to the knots ti individually, it is 
also easy to formulate the corresponding optimally local Hermite interpolants with 
Taylor data of possibly different lengths at different sample points xi. This flexi- 
bility allows the possibility of constructing locally supported Hermite interpolatory 
approximants as well as Hermite-wavelets that generalize those of Goodman, Lee, 
and Tang [19] to the setting of nonuniform knots. A thorough treatment of this 
general framework requires more careful investigation. 

2. LOCAL INTERPOLATORY SPLINE INTERPOLANTS 

In this section, we demonstrate how the blending formula introduced in [6] can 
be used to construct a local interpolatory spline approximant, with arbitrary order 
(< n) of exactness on polynomial reproduction, by matching an explicitly con- 
structed optimally local spline approximant with the optimally local spline inter- 
polant discussed in Section 1. In addition, it is shown that the resulting approxi- 
mation operator is, for 3 < n < 5, the optimally local operator for which existence 
and uniqueness was established by Dahmen, Goodman, and Micchelli [11]. 

2.1. An optimally local approximation operator. Our first objective is to 
explicitly construct, for a knot sequence t satisfying (1.15) and for integers n, p, A, 
satisfying n > 3, 1 < p < n, A E 2, a sequence of spline functions 

Up:,/\i = 
UP) A, n,t, i E Sn, t, i E Zi 

which possess the following two properties: 

(2.1) supp Up,l,i C [t2i-/02i-/+n+2p-1]; 

and the corresponding approximation operator Up,A = Up,/,n,t, defined by 

(2.2) (up, /\f ) (x) :=,f (xi) up, /, i (x), 

reproduces all polynomials of order p (or degree < p - 1), namely, 

(2.3) Up,Ap =P, p E Tp-i. 

Hence, we write up,,i as a B-spline series 

-/\+2p-1 

(2.4) up,?Ai = E ai,jNn,2i+jv 



INTERPOLATORY APPROXIMANTS AND WAVELETS 103 

where the B-spline coefficients aij = ap,,,n,t,i,j will now be shown to be uniquely 
determined by the polynomial reproduction condition (2.3). 

Recalling the standard result (see e.g. [22, p. 125]) that 

(2.5) xk 
= 

( ) n(0)Nn i (X) XER, k=0,1, ... n 1, 

with fPi = fPn,t,i E Tn-I defined by 
n-I 

(2.6) bi (x) JI (x - ti+q), 
q=1 

we find, after some manipulation, that the B-spline coefficients in (2.4) are uniquely 
determined by solving, for fixed i E Z and r E {0, 1}, the p x p (transposed) 
Vandermonde linear system 

(2.7) (Xi-j)k ai-j,2jkr = (n-k) 
(0)I k = 0, 1,. . , p-1. I: j,j+ - 

n i+ 

As noted also in [15, pp. 114-115], a Vandermonde-type coefficient matrix similar 
to the one implied by (2.7) can be explicitly inverted; indeed, introducing the basic 
polynomials q3i,r,j = Op,A,x,i,r,j E lFp-1 by 

-L\ 2 r+p-l 

(2.8) 4i,r,j(X) = 1 (X - Xi-q), 

j7&q=- L2r 

we can now show that the resulting B-spline series for up, \,i has the form 

1 -Ljri+p-1 

(2.9) up,?\i = E E ai,2j+r Nn,2i+2j+r, 
r=O __ rOj=_ L >+2r 

where 
p-l 

1 E (- 1) k+ rk j()2n+- I-k)(0 
__ 1 k=O ijrj( 2i2r ) 

(2.10) ai,2j+r -1)! (i+j,r,j (Xi) 

Next, we proceed to show that the formula (2.10) can be expressed explicitly in 
terms of the knot distributions. We shall need the polynomial identity in Lemma 2.1 
below which is an extension of Lemma 3.3 in [14], in which two polynomials of the 
same degree were considered. To prove Lemma 2.1, we shall employ the known 
result (see e.g. [14, Lemma 3.2]) that, with t denoting a positive integer and 
{~Y1,... ,} C R, we have 

(2.11) ]7(x - r) =k(1) k k(7y,*X.k 
r=1 k=O 

where Ckx . , ) denotes the classical symmetric function defined by 
(2.12) 

K -k+1 K-sk+2 
AAfor k = I K 

UkQy,. fZitj?=1 Z=1?x2.Zk=ik-l?l~ fr ,. 
I for k =0. 
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Lemma 2.1. Let A1 and v denote positive integers with 1 < ,u < v, and suppose 
that {cxa,... ,ca}, {/3,l... I, 3v} C R. Then the polynomials p E 7r and q E 7r1, 
defined by 

Av 

(2.13) p(x) :f J|(x -ar), q(x) = l(x -ofr), 
r=1 r=1 

satisfy the identity 
(2.14) 

~(_l1)kp(k)(O)q( q k)(0) = (V-A)! (ii-al) (2i -a2)-... S (0i, at) 
k=O il=1 i2=1 

i2Oil 4-i,* i_1 

Proof. Applying the identity (2.11) to the polynomials in (2.13), we find 

(_l 1)kp(k) (O)q(v-k) (0) 

k=O 

- (-1)A (_l)kk!(v - k)!UAf.k(al,* * ,a4)Uk(/31. * V) 
k=O 

Hence, by adopting the vector notation a = (ca,... a, .), and defining the function 
F: RA - R by 

v' v v 

(2.15) F(a) := A 5(a3i l-ai) 5 (2 -C2) 5.. (fi-a), 
il4=1 il-1 jkLl 

i2Oil l,...,_1 

it will clearly suffice to show that 

(2.16) F(a) = z-1) ( 
(k)f /3.) 

Our method of proof consists of showing that the right-hand side of (2.16) is pre- 
cisely the multivariate Taylor expansion of F at the origin (ae = 0), as clearly given 
by 

(2.17) F k(a) =ok 
F a 

k0 l?ie?At 31 39a2 ..3(ak 

()3 e2 C 

t=I,... ,k 

jedistinct 

Next, observing that the order in which the components of a appear in the 
definition (2.15) of F can be permuted arbitrarily without changing F(a), we see, 
in (2.17), that 

akF (0) 

(9aj, c9a 2 .. a ajk 

= (-1)k(v-At + k)... (v- + 1)E il 5 /3i2 
... E Ai-k 

i=1 i2=1 iA-k=1 

i2#il i.-k-1 

=(_j)k (V 
- 

+ k)! (At-k)!oAtk (131, ,3I), 

(v a yti)! 

which, together with (2.17), easily yields the desired result. D 
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If we now choose, in the identity (2.14), u- p - 1, v = n- 1, p =q i+j,r,j and 
q = tP2i+2j+r, we find that the expression (2.10) can be written in the explicit form 

(2.18) ai __(n - p)! Xi?j3'k 
- 

t2i+2j+r+Vk 
(2.18) ai,2j+r - 

(n 
- 1)! lk- kEr Xi?jk - X 

kE Mr,j 
Vk distinct 

where the integer sets Mr,j = Mp,X\r,j are defined by 

(2.19) Mr,j {= - [a2rJ -L rJ + 1 ... - + p _1}\{j}. 

We have thus established the following result. 

Theorem 2.2. For a knot sequence t satisfying (1.15), and with n, p,A denot- 
ing integers such that n > 3, 1 < p < n, A E Z, there exists a unique sequence 
{up,A,i: i E 2} C Sn,t, as given explicitly by (2.9), (2.18), such that (2.1) and (2.3) 
are satisfied. 

Remark. It is clear from Theorem 2.2 that up, \,i is the minimally supported spline 
function in Sn,t for which (2.3) holds; in this sense, we call the approximation 
operator Up,, optimally local. (Note that this should not be confused with the 
optimally local interpolation operators Ln,z introduced in (1.12).) 

2.2. Applications of the quasi-interpolation and local interpolation blend- 
ing formula. Next we explicitly construct, with the knot sequence t satisfy- 
ing (1.15), and for positive integers n, p and At satisfying n > 3, 1 < p < n, 
1 < At ? max{rn + P - 3, L32i + p-5}, a sequence of spline functions 

Vp)p,vi = Vp,/utn,tt E Sn,t, i E 2Z 

which possess the following properties: 

(2.20) v ,1,i(x.) = i,j, i,j E 2; 

(2.21) supp vp,',Yi C {xi/ 
I xi /3 /2+p4 

for n 
= 3, 

1 [X j- , xi--+ L3n/2 +p-4] for n > 4; 

and such that the corresponding interpolation operator Vp,, = Vp,,n,t defined by 

(2.22) (VP,,1 f)(X) = E f(xi)vp, p,i(X) 
iE7 

reproduces all polynomials of order p, namely 

(2.23) Vp,_tp = p, pGE rpj-. 

Consider first the quadratic case with n = 3. Appealing to Theorem 2.2, as well 
as (2.1), we see that 

(2.24) supp up,2/-t,i C [X .- , v 3. 
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Also, introducing for fixed j E Z the Lagrange fundamental polynomials rj,i 
?7p,l_,j,i E lp-1, i 1,2,... ,p, by 

p 
r1 

) 7 X - Xj4+p-r ,i = 1, 2, .., p 
r-1 2+t - Xj+,u-r 
r=i 

we deduce from (2.3) and (2.4) that 

p 

6,U,i = ?j,i (Xj) = E?j,i (Xj+,u_-q)Up,21i,j+ii-q (Xj) 
q=1 

= Up,2/,j+/-i(xj), 

which, together with (2.24), implies that 

(2.25) Up,2 p,i(Xi) = 6i,j i,j E 2, n = 3. 

Thus, if we define vp,/l,i := Up,2/1,i for n = 3, it follows immediately from (2.24), 
(2.25), and (2.3) that vp,l,i indeed satisfies the desired properties (2.20), (2.21), 
and (2.22), (2.23). For n > 4, however, the interpolation property (2.25) does not 
hold; but for this general case, we can employ the Chui-Diamond blending formula 
[6] as in the bottom line of the construction (2.26) below. The main result of this 
section is as follows. 

Theorem 2.3. Suppose the knot sequence t satisfies (1.15), and let n, p and ,t 
denote positive integers such that n > 3, 1 < p < n, 1 < ,u < max{n + p - 3, Lki + 
p - 5}. Then the sequence vp,,,i E Sn,t, i E 2, defined by 

(2-6 
f Up,211,i, for n~ = 3, 

(2.26) ~p,I { tn, ,Ai + Up,29n,Aj - , LnTn, p up,29n,lbi for n > 4, 

with 

(2.27) Tnh,f := min{u, n - 3}, un,1 = -7n,p + 1, 

and where ?n,r,i and Ln,, for 1 < v < max{1, n-3}, and up,?,i for A E Z are defined 
as in (1.11), (1.12), (2.9) and (2.18), satisfies the properties (2.20) and (2.21), as 
well as (2.22) and (2.23). 

Remark. Observe from (1.12) and (2.1) that, for n > 4, (2.26) can be written in 
the more explicit form 

Ln/2i +p-1 

(2.28) Vp,),i = 
fnn,A)i+up,2Un,A)i- E Up,2an,p)i(Xi-ant+k)n-rnti-9n,+k 

k=1 

Graphs showing the construction procedure of vp,,i following (2.26), will be dis- 
played in ?4. 

Proof of Theorem 2.3. By virtue of the discussion preceding Theorem 2.3, it will 
suffice to establish the theorern for n > 4. 
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Noting first from (2.27) that 1 ? r -3, we deduce that i and 

Ln,rn, as appearing in (2.26), are indeed well defined. Next, recalling the support 
intervals (1.7) and (2.1), it follows from (2.28) that (2.21) holds. Also, applying 
(1.3) and (1.13) to (2.26), we can verify the interpolation property (2.20). 

Finally, to prove (2.22) and (2.23), we use (1.12) and (2.2) to write, for p C xp- I 

Vp'tp = (Ln,rn-,p + Up,29n -Ln,rn,pUp)2Un,A)P 

and then apply (2.3). O 

Remarks. (a) If we extend the polynomial reproduction property (2.23) to include 
the value p = 0 in the sense that 

Vo,,p p for p(x) =1, x C R, 

we observe from (1.3) and (1.7) that the choices 

. f3,1,i for n = 3, 
V)'8 ln,,i for n > 4, 

can be included in Theorem 2.3, but where the support properties (2.21) must be 
replaced by 

supp vo, tL_ xi+i] for n = 3, su,pp K:X i t+n-2] for n > 4. 

(b) In the paper [15] it is shown that, for the optimal order (p = n) polynomial 
reproduction case, and with the definition (1.2) of x changed to xi t(n-1)i, i E Z, 

the minimally supported spline approximant, constructed similarly to those in ?2.1 
above, automatically interpolates at x, a result which is of course consistent with 
the quadratic case n = 3 of Theorem 2.3 above. 

2.3. Optimally local interpolatory spline approximants. The question now 
arises whether the sequence Ivp,,i: i E Z}, as constructed in Theorem 2.3, is 
optimally local in the sense that {Vp,,i: i E Z} is the unique sequence in Sn,t 
satisfying (2.20), (2.21) and (2.22), (2.23). Indeed, for positive integers n, p and ,u 
satisfying n > 3, 1 < p < n and 1 < , < n + p -3, which is easily seen to imply the 
conditions on n, p and ,u in Theorem 2.3, Dahmen, Goodman, and Micchelli, [11, 
Theorem 4.3.1] proved the existence of a unique sequence 

wp,.tL,i 
= Wp,A,n,t,i C Sn,t, i E Z) 

which possesses the following three properties: 

(2.29) WPAti(xj) = 6i,j, i,j E Z; 

(2.30) supp Wp,.,i C [Xi-wXi-t+n+p-21; 

and that the corresponding interpolation operator WP,A = Wp,l,,n,t defined by 

(2.31) (Wp,,1f)(x) = Z f (xi)wp, >,i (x) 
iEZ 
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reproduces all polynomials of order p, namely, 

(2.32) Wp,tp = p, p C lFp- . 

Note in particular that the uniqueness of wP,,i, together with its support property 
(2.30), imply that wp,,i has minimum support. The procedure suggested in [11] 
for the construction of wp,,i is to solve a system of linear equations of dimension 

(n +2p-3) x (n+?2p-3). 
Now recall the result of Theorem 2.3, from which it is easily verified that 

(2.33) supp vp,x,i C [Xi-x xi-t+n+p-2], 3 < n < 5, 

whereas 

(2.34) supp Vp,t,i C [Xi-wXi-A+L3n/2j+p-4] (4 [Xi-t+n+p-2]v n > 6. 

Hence, from the uniqueness part of the above mentioned Dahmen, Goodman, and 
Micchelli result, we deduce that 

vp.= W 3 < n < 5 

whereas, for n > 6, the sequence 1VP4, i, i C 2} lacks the minimum support prop- 
erty (2.30) of fwp i: i C 2}, in the sense that the index difference between the 
two endpoints of the interval in (2.21) exceeds that of the interval in (2.30) by 
l(nr- 4)/2j. 

We can therefore conclude that, for 3 < n < 5, our formulas (2.26) explicitly 
solve the Dahmen, Goodman, and Micchelli (n + 2p - 3) x (n + 2p - 3) linear 
system for the B-spline coefficients of wp,,,,i. For example, in the case n = 5, p = 5, 
1 < , < 7, the original 12 x 12 linear system is solved by our construction (2.28), 
in which all the quantities are explicitly given by the formulas (2.9), (2.18), as 
well as (1.11), in which the quotient of two second-order determinants needs to be 
evaluated. For n > 6, our construction for v remains explicit, at the price of 
exceeding, in terms of index difference, the minimum support property of wp,,i by 
the quantity l(n - 4)/2j. 

3. CONSTRUCTION OF SPLINE WAVELETS ON NONUNIFORM KNOTS 

Let m > 2 be any positive integer, and t, x the two bi-infinite sequences de- 
fined by (1.1) and (1.2), respectively. We will be interested in the (closed) spline 
subspaces 

(3.1) VX? := cloSL2(Sm,x) and VtT7 := closL2(Sm,t) 

of L2 := L2(IR). Note that Vx7o is a subspace of Vt.l , and we will be concerned 
with the orthogonal complement Wt7x,o in Vt17 of Vx7o. While the B-splines Nm,x,i 
and Nm,t,i, i C Z, are minimally supported functions that generate VX70 and Vt.7, 
respectively (by taking all f2-linear combinations), the minimally supported func- 
tions 

(3.2) bm,i = 4m,t,i C Wtx O C VtT 1 C E 
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that generate all of Wt7,'0 (again by taking ?2-linear combinations) are called B- 
spline-wavelets (or simply B-wavelets) of order m on t. 

To identify the space Wt7x0, we follow [8,101 (for the case of uniform knot dis- 
tributions; see also [5, Theorem 6.2]) and [2] (for nonuniform simple knot distribu- 
tions), by introducing the space 

(3.3) T {f Vt1 fxr =2}m 

and observe that although the knot sequence t in (1.1) allows multiplicities, the 
same proof as in the case of uniform knot distribution gives the isomorphism be- 
tween Vt2m and Wt7,0o by using the m-fold differentiation Dm. Hence, by identi- 
fying the minimally supported functions 

(3.4) t1Q2m,i = 12m,t,i C vtj1 ' i C 2 

the mth-order B-wavelets in (3.2) are given by 

(3.5) 0m,j = DmT2m,i i C 2. 

If we require xi to be the left-hand endpoint of supp T2m,i, then it is not difficult 
to see that in order to satisfy the interpolation condition T2m(Xi+j) = 0, j - 

1,2, .. ., the (nontrivial) T2m,i with minimum support is a linear combination of 
the B-splines 

N2m2ii N2m,2i+I... N2m,2i+2m-2. 

Hence, in general, we have 

(3.6) supp T12m,i = [Xi) Xi+2m-1]. 

On the other hand, by applying the optimally local operator L2m in (1.14) (with 
n = 2m), it is clear that 

(3.7) V -2rn = {0 - L2mc: q$EVt}. 

So, to construct 4f2m,i, we must find q3 E V,2m such that q - L2mq vanishes outside 

[Xi, Xi+2m-1 I 
For this purpose, we introduce the knot sequence t = t(i) :_ t\{Xi+m-1, Xi+m} 

and set 

(3.8a) t: ..< tLi<to < .. 

with 

0 tj for j<2i+2m-3, 

(3.8b) tj = t2i+2m-1 for j = 2i+2m -2, 

1 tj+2 for j>?2i+2m-1. 
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As in (1.1)-(1.2), we also need the sequence of sample points 

(3.9a) 
R () . J I<J 

(where Jr:= t23, j C Z. 

Hence, it follows from (3.8b) and (3.9a) that 

rx for j<i+m-2, 

(3.9b) J; j t2i+m-1 for j = i+m-i, 

1xj+1 for j i+m. 

Now, instead of using the sequences t and x to determine the optimally local 
fundamental functions in (1.3), we consider the sequences t and x, yielding 

(3.10) (2m,i := 2m,i2m,t,x,i+m-1 = t2m,m-l,t,x,i+m-1 

By referring to (3.9b), it is then easy to verify from (1.3) and (1.8) the following 
properties of (t)2m,i 

(3.11a) supp (2m,i = [Xi, Ji+2m-2l = [XivXi+2m-1l, 

(3.11b) 02m,i(Xj)0 = forj < i+m- 2 orj > i+m+ 1. 

So, by (3.11b) and using the optimally local operator L2m in (1.14), which was 
determined by f2m,i = f2m,m-1,t,x,i in (1.5), we have 

(L2mO2m,i)(X) = 2m,i (Xi+m-1)f2m,i+m-1(X) + 02m,i (Xi+m)f2m,i+m(X). 

It now follows from (1.8) that 

supp(L2m(t2m,i) = [Xi, Xi+2m-11 

which agrees with the support of (2m,i in (3.1la). Hence, in view of (3.6) and (3.7), 
we may set 

(3.12) T2m,i(X) = 02m,i(X) -(L2m 2m,i)(X). 

This establishes the following. 

Theorem 3.1. Let t and x be the knot sequences given by (1.1) and (1.2), respec- 
tively, and m any positive integer. Then the B-wavelets that generate Wt7x70 are 
given by Om,, i E Z, in (3.5), where T2m,i are described in (3.12), with (2m,i given 
by (3.10). 
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4. GRAPHS OF INTERPOLATORY APPROXIMANTS AND WAVELETS 

We first demonstrate the construction procedure of the interpolatory approxi- 
mants v , by using the formula in (2.26), with n = 5. In Figure la---c, we display 
the graphs of 6.2.10, U3.4.1() and the interpolatory approximant V3.3X10, with knot 
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FIGURE 1. (a) 5.2.1() (b) U34.1() (c) V3 3 (1 
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and node sequences 

t: < 4.8 < 5 < 5.2 < 5.3 < 5.5 < 6.3 < 6.5 < 7 < 7.6 < 7.8 < 7.9 < 7.95 < 8 

< 8.07 < 8.1 < 8.8 < 9 < 9.1 < 9.4 < 9.6 < 10 < 10.2 < 10.6 < 10.65 < 10.7 

< 10.9 < 11 < 11.5 < 12 < 12.07 < 12.1 < , 

x: < 4.8 < 5.2 < 5.5 < 6.5 < 7.6 < 7.9 < 8 < 8.1 < 9 < 9.4 < 10 < 10.6 < 10.7 

< 11 < 12 < 12.1 < .. 

respectively, and with to = x= 4.8. Observe that 

supp ?5,2,10 = [9, 10.6], supp U3,4,10 = [9, 111, supp V3,3,10 [8.1, 111. 

Also observe that the indices of ?nTh ,i, Up,2ci,,,,i, and vp,m,i come from the choice 
of 

n = 5, p = 3, ,u = 3, i = 10, 

so that 

rn, = min{3, 2} = 2 and (Jn, = 3-2 + 1 = 2. 

To demonstrate the construction of the spline wavelets 0,,i with nonuniform 
knots, we follow the procedure (3.12) and (3.5) with 02m,i given by (3.10). The 
graphs of 2,,i, T"2m,i, and V/m,i, with m = 6, i = 5, and knot and node sequences 

t: < 0 < 0.2 < 0.4 < 0.5 < 0.6 < 0.9 < I < 1.2 < 1.3 < 1.5 

< 2 = 2 < 2.3 < 2.7 = 2.7 

< 3 = 3 < 3.4 < 3.5 < 3.8 < 4 < 4.1 < 4.3 < 4.6 = 4.6 < 5 = 5 < 5.1 < 5.5 

< 5.7 < 5.9 < 6 = 6 < 6.2 < 7 = 7 < 7.5 < 8 = 8 < 8.2 < 9 , 

x: < 0< 0.4 <0.6 <1< 1.3< 2 <2.3 <2.7< 3 <3.5< 4 <4.3 <4.6 

< 5 < 5.5 < 5.9 < 6 < 7 < 7.5 < 8 < 9 , 

respectively, and to = xo = 0, are shown in Figure 2a-c. Observe that with i = 5, 
we have 

supp 012,5 = supp P12,5 = supp 4'6,5 = [X5X X16] = [2,6]. 
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